3.7.89 \(\int \frac {(c+d x^2)^{3/2}}{a+b x^2} \, dx\) [689]

Optimal. Leaf size=113 \[ \frac {d x \sqrt {c+d x^2}}{2 b}+\frac {(b c-a d)^{3/2} \tan ^{-1}\left (\frac {\sqrt {b c-a d} x}{\sqrt {a} \sqrt {c+d x^2}}\right )}{\sqrt {a} b^2}+\frac {\sqrt {d} (3 b c-2 a d) \tanh ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c+d x^2}}\right )}{2 b^2} \]

[Out]

(-a*d+b*c)^(3/2)*arctan(x*(-a*d+b*c)^(1/2)/a^(1/2)/(d*x^2+c)^(1/2))/b^2/a^(1/2)+1/2*(-2*a*d+3*b*c)*arctanh(x*d
^(1/2)/(d*x^2+c)^(1/2))*d^(1/2)/b^2+1/2*d*x*(d*x^2+c)^(1/2)/b

________________________________________________________________________________________

Rubi [A]
time = 0.06, antiderivative size = 113, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {427, 537, 223, 212, 385, 211} \begin {gather*} \frac {(b c-a d)^{3/2} \text {ArcTan}\left (\frac {x \sqrt {b c-a d}}{\sqrt {a} \sqrt {c+d x^2}}\right )}{\sqrt {a} b^2}+\frac {\sqrt {d} (3 b c-2 a d) \tanh ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c+d x^2}}\right )}{2 b^2}+\frac {d x \sqrt {c+d x^2}}{2 b} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(c + d*x^2)^(3/2)/(a + b*x^2),x]

[Out]

(d*x*Sqrt[c + d*x^2])/(2*b) + ((b*c - a*d)^(3/2)*ArcTan[(Sqrt[b*c - a*d]*x)/(Sqrt[a]*Sqrt[c + d*x^2])])/(Sqrt[
a]*b^2) + (Sqrt[d]*(3*b*c - 2*a*d)*ArcTanh[(Sqrt[d]*x)/Sqrt[c + d*x^2]])/(2*b^2)

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 385

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 427

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[d*x*(a + b*x^n)^(p + 1)*((c
 + d*x^n)^(q - 1)/(b*(n*(p + q) + 1))), x] + Dist[1/(b*(n*(p + q) + 1)), Int[(a + b*x^n)^p*(c + d*x^n)^(q - 2)
*Simp[c*(b*c*(n*(p + q) + 1) - a*d) + d*(b*c*(n*(p + 2*q - 1) + 1) - a*d*(n*(q - 1) + 1))*x^n, x], x], x] /; F
reeQ[{a, b, c, d, n, p}, x] && NeQ[b*c - a*d, 0] && GtQ[q, 1] && NeQ[n*(p + q) + 1, 0] &&  !IGtQ[p, 1] && IntB
inomialQ[a, b, c, d, n, p, q, x]

Rule 537

Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*Sqrt[(c_) + (d_.)*(x_)^(n_)]), x_Symbol] :> Dist[f/b, I
nt[1/Sqrt[c + d*x^n], x], x] + Dist[(b*e - a*f)/b, Int[1/((a + b*x^n)*Sqrt[c + d*x^n]), x], x] /; FreeQ[{a, b,
 c, d, e, f, n}, x]

Rubi steps

\begin {align*} \int \frac {\left (c+d x^2\right )^{3/2}}{a+b x^2} \, dx &=\frac {d x \sqrt {c+d x^2}}{2 b}+\frac {\int \frac {c (2 b c-a d)+d (3 b c-2 a d) x^2}{\left (a+b x^2\right ) \sqrt {c+d x^2}} \, dx}{2 b}\\ &=\frac {d x \sqrt {c+d x^2}}{2 b}+\frac {(d (3 b c-2 a d)) \int \frac {1}{\sqrt {c+d x^2}} \, dx}{2 b^2}+\frac {(b c-a d)^2 \int \frac {1}{\left (a+b x^2\right ) \sqrt {c+d x^2}} \, dx}{b^2}\\ &=\frac {d x \sqrt {c+d x^2}}{2 b}+\frac {(d (3 b c-2 a d)) \text {Subst}\left (\int \frac {1}{1-d x^2} \, dx,x,\frac {x}{\sqrt {c+d x^2}}\right )}{2 b^2}+\frac {(b c-a d)^2 \text {Subst}\left (\int \frac {1}{a-(-b c+a d) x^2} \, dx,x,\frac {x}{\sqrt {c+d x^2}}\right )}{b^2}\\ &=\frac {d x \sqrt {c+d x^2}}{2 b}+\frac {(b c-a d)^{3/2} \tan ^{-1}\left (\frac {\sqrt {b c-a d} x}{\sqrt {a} \sqrt {c+d x^2}}\right )}{\sqrt {a} b^2}+\frac {\sqrt {d} (3 b c-2 a d) \tanh ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c+d x^2}}\right )}{2 b^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.27, size = 129, normalized size = 1.14 \begin {gather*} \frac {b d x \sqrt {c+d x^2}-\frac {2 (b c-a d)^{3/2} \tan ^{-1}\left (\frac {a \sqrt {d}+b x \left (\sqrt {d} x-\sqrt {c+d x^2}\right )}{\sqrt {a} \sqrt {b c-a d}}\right )}{\sqrt {a}}+\sqrt {d} (-3 b c+2 a d) \log \left (-\sqrt {d} x+\sqrt {c+d x^2}\right )}{2 b^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(c + d*x^2)^(3/2)/(a + b*x^2),x]

[Out]

(b*d*x*Sqrt[c + d*x^2] - (2*(b*c - a*d)^(3/2)*ArcTan[(a*Sqrt[d] + b*x*(Sqrt[d]*x - Sqrt[c + d*x^2]))/(Sqrt[a]*
Sqrt[b*c - a*d])])/Sqrt[a] + Sqrt[d]*(-3*b*c + 2*a*d)*Log[-(Sqrt[d]*x) + Sqrt[c + d*x^2]])/(2*b^2)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(1242\) vs. \(2(91)=182\).
time = 0.12, size = 1243, normalized size = 11.00 Too large to display

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x^2+c)^(3/2)/(b*x^2+a),x,method=_RETURNVERBOSE)

[Out]

1/2/(-a*b)^(1/2)*(1/3*(d*(x-1/b*(-a*b)^(1/2))^2+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(3/2)+d*(
-a*b)^(1/2)/b*(1/4*(2*d*(x-1/b*(-a*b)^(1/2))+2*d*(-a*b)^(1/2)/b)/d*(d*(x-1/b*(-a*b)^(1/2))^2+2*d*(-a*b)^(1/2)/
b*(x-1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2)+1/8*(-4*d*(a*d-b*c)/b+4*d^2*a/b)/d^(3/2)*ln((d*(-a*b)^(1/2)/b+d*(x-1
/b*(-a*b)^(1/2)))/d^(1/2)+(d*(x-1/b*(-a*b)^(1/2))^2+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2)
))-(a*d-b*c)/b*((d*(x-1/b*(-a*b)^(1/2))^2+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2)+d^(1/2)*(
-a*b)^(1/2)/b*ln((d*(-a*b)^(1/2)/b+d*(x-1/b*(-a*b)^(1/2)))/d^(1/2)+(d*(x-1/b*(-a*b)^(1/2))^2+2*d*(-a*b)^(1/2)/
b*(x-1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2))+(a*d-b*c)/b/(-(a*d-b*c)/b)^(1/2)*ln((-2*(a*d-b*c)/b+2*d*(-a*b)^(1/2
)/b*(x-1/b*(-a*b)^(1/2))+2*(-(a*d-b*c)/b)^(1/2)*(d*(x-1/b*(-a*b)^(1/2))^2+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/
2))-(a*d-b*c)/b)^(1/2))/(x-1/b*(-a*b)^(1/2)))))-1/2/(-a*b)^(1/2)*(1/3*(d*(x+1/b*(-a*b)^(1/2))^2-2*d*(-a*b)^(1/
2)/b*(x+1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(3/2)-d*(-a*b)^(1/2)/b*(1/4*(2*d*(x+1/b*(-a*b)^(1/2))-2*d*(-a*b)^(1/2)/
b)/d*(d*(x+1/b*(-a*b)^(1/2))^2-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2)+1/8*(-4*d*(a*d-b*c)/
b+4*d^2*a/b)/d^(3/2)*ln((-d*(-a*b)^(1/2)/b+d*(x+1/b*(-a*b)^(1/2)))/d^(1/2)+(d*(x+1/b*(-a*b)^(1/2))^2-2*d*(-a*b
)^(1/2)/b*(x+1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2)))-(a*d-b*c)/b*((d*(x+1/b*(-a*b)^(1/2))^2-2*d*(-a*b)^(1/2)/b*
(x+1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2)-d^(1/2)*(-a*b)^(1/2)/b*ln((-d*(-a*b)^(1/2)/b+d*(x+1/b*(-a*b)^(1/2)))/d
^(1/2)+(d*(x+1/b*(-a*b)^(1/2))^2-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2))+(a*d-b*c)/b/(-(a*
d-b*c)/b)^(1/2)*ln((-2*(a*d-b*c)/b-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))+2*(-(a*d-b*c)/b)^(1/2)*(d*(x+1/b*(-
a*b)^(1/2))^2-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2))/(x+1/b*(-a*b)^(1/2)))))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^2+c)^(3/2)/(b*x^2+a),x, algorithm="maxima")

[Out]

integrate((d*x^2 + c)^(3/2)/(b*x^2 + a), x)

________________________________________________________________________________________

Fricas [A]
time = 1.48, size = 721, normalized size = 6.38 \begin {gather*} \left [\frac {2 \, \sqrt {d x^{2} + c} b d x - {\left (3 \, b c - 2 \, a d\right )} \sqrt {d} \log \left (-2 \, d x^{2} + 2 \, \sqrt {d x^{2} + c} \sqrt {d} x - c\right ) - {\left (b c - a d\right )} \sqrt {-\frac {b c - a d}{a}} \log \left (\frac {{\left (b^{2} c^{2} - 8 \, a b c d + 8 \, a^{2} d^{2}\right )} x^{4} + a^{2} c^{2} - 2 \, {\left (3 \, a b c^{2} - 4 \, a^{2} c d\right )} x^{2} + 4 \, {\left (a^{2} c x - {\left (a b c - 2 \, a^{2} d\right )} x^{3}\right )} \sqrt {d x^{2} + c} \sqrt {-\frac {b c - a d}{a}}}{b^{2} x^{4} + 2 \, a b x^{2} + a^{2}}\right )}{4 \, b^{2}}, \frac {2 \, \sqrt {d x^{2} + c} b d x - 2 \, {\left (3 \, b c - 2 \, a d\right )} \sqrt {-d} \arctan \left (\frac {\sqrt {-d} x}{\sqrt {d x^{2} + c}}\right ) - {\left (b c - a d\right )} \sqrt {-\frac {b c - a d}{a}} \log \left (\frac {{\left (b^{2} c^{2} - 8 \, a b c d + 8 \, a^{2} d^{2}\right )} x^{4} + a^{2} c^{2} - 2 \, {\left (3 \, a b c^{2} - 4 \, a^{2} c d\right )} x^{2} + 4 \, {\left (a^{2} c x - {\left (a b c - 2 \, a^{2} d\right )} x^{3}\right )} \sqrt {d x^{2} + c} \sqrt {-\frac {b c - a d}{a}}}{b^{2} x^{4} + 2 \, a b x^{2} + a^{2}}\right )}{4 \, b^{2}}, \frac {2 \, \sqrt {d x^{2} + c} b d x + 2 \, {\left (b c - a d\right )} \sqrt {\frac {b c - a d}{a}} \arctan \left (\frac {{\left ({\left (b c - 2 \, a d\right )} x^{2} - a c\right )} \sqrt {d x^{2} + c} \sqrt {\frac {b c - a d}{a}}}{2 \, {\left ({\left (b c d - a d^{2}\right )} x^{3} + {\left (b c^{2} - a c d\right )} x\right )}}\right ) - {\left (3 \, b c - 2 \, a d\right )} \sqrt {d} \log \left (-2 \, d x^{2} + 2 \, \sqrt {d x^{2} + c} \sqrt {d} x - c\right )}{4 \, b^{2}}, \frac {\sqrt {d x^{2} + c} b d x - {\left (3 \, b c - 2 \, a d\right )} \sqrt {-d} \arctan \left (\frac {\sqrt {-d} x}{\sqrt {d x^{2} + c}}\right ) + {\left (b c - a d\right )} \sqrt {\frac {b c - a d}{a}} \arctan \left (\frac {{\left ({\left (b c - 2 \, a d\right )} x^{2} - a c\right )} \sqrt {d x^{2} + c} \sqrt {\frac {b c - a d}{a}}}{2 \, {\left ({\left (b c d - a d^{2}\right )} x^{3} + {\left (b c^{2} - a c d\right )} x\right )}}\right )}{2 \, b^{2}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^2+c)^(3/2)/(b*x^2+a),x, algorithm="fricas")

[Out]

[1/4*(2*sqrt(d*x^2 + c)*b*d*x - (3*b*c - 2*a*d)*sqrt(d)*log(-2*d*x^2 + 2*sqrt(d*x^2 + c)*sqrt(d)*x - c) - (b*c
 - a*d)*sqrt(-(b*c - a*d)/a)*log(((b^2*c^2 - 8*a*b*c*d + 8*a^2*d^2)*x^4 + a^2*c^2 - 2*(3*a*b*c^2 - 4*a^2*c*d)*
x^2 + 4*(a^2*c*x - (a*b*c - 2*a^2*d)*x^3)*sqrt(d*x^2 + c)*sqrt(-(b*c - a*d)/a))/(b^2*x^4 + 2*a*b*x^2 + a^2)))/
b^2, 1/4*(2*sqrt(d*x^2 + c)*b*d*x - 2*(3*b*c - 2*a*d)*sqrt(-d)*arctan(sqrt(-d)*x/sqrt(d*x^2 + c)) - (b*c - a*d
)*sqrt(-(b*c - a*d)/a)*log(((b^2*c^2 - 8*a*b*c*d + 8*a^2*d^2)*x^4 + a^2*c^2 - 2*(3*a*b*c^2 - 4*a^2*c*d)*x^2 +
4*(a^2*c*x - (a*b*c - 2*a^2*d)*x^3)*sqrt(d*x^2 + c)*sqrt(-(b*c - a*d)/a))/(b^2*x^4 + 2*a*b*x^2 + a^2)))/b^2, 1
/4*(2*sqrt(d*x^2 + c)*b*d*x + 2*(b*c - a*d)*sqrt((b*c - a*d)/a)*arctan(1/2*((b*c - 2*a*d)*x^2 - a*c)*sqrt(d*x^
2 + c)*sqrt((b*c - a*d)/a)/((b*c*d - a*d^2)*x^3 + (b*c^2 - a*c*d)*x)) - (3*b*c - 2*a*d)*sqrt(d)*log(-2*d*x^2 +
 2*sqrt(d*x^2 + c)*sqrt(d)*x - c))/b^2, 1/2*(sqrt(d*x^2 + c)*b*d*x - (3*b*c - 2*a*d)*sqrt(-d)*arctan(sqrt(-d)*
x/sqrt(d*x^2 + c)) + (b*c - a*d)*sqrt((b*c - a*d)/a)*arctan(1/2*((b*c - 2*a*d)*x^2 - a*c)*sqrt(d*x^2 + c)*sqrt
((b*c - a*d)/a)/((b*c*d - a*d^2)*x^3 + (b*c^2 - a*c*d)*x)))/b^2]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (c + d x^{2}\right )^{\frac {3}{2}}}{a + b x^{2}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x**2+c)**(3/2)/(b*x**2+a),x)

[Out]

Integral((c + d*x**2)**(3/2)/(a + b*x**2), x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^2+c)^(3/2)/(b*x^2+a),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:index.cc index_m i_lex_is_greater Error: Bad Argument Value

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (d\,x^2+c\right )}^{3/2}}{b\,x^2+a} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c + d*x^2)^(3/2)/(a + b*x^2),x)

[Out]

int((c + d*x^2)^(3/2)/(a + b*x^2), x)

________________________________________________________________________________________